B16-G4F mouse melanoma cells: an MSH receptor-deficient cell clone

Flavio F. Solca^a, Johanna Chluba-de Tapia^a, Kunio Iwata^b and Alex N. Eberle^a

^aLaboratory of Endocrinology, Department of Research (ZLF), University Hospital and University Children's Hospital, Basel, Switzerland and bToxicology Research Laboratories, Japan Tobacco Inc., Nakogi, Hatano, Kanagawa, Japan

Received 15 March 1993

The two mouse melanoma cell lines B16-F1 and B16-G4F retain their melanogenic capacity when cultured in vitro. Melanotropic peptides such as α-melanocyte-stimulating hormone (α-MSH) induce formation and release of melanin pigment in B16-F1 cells. In contrast, B16-G4F cells do not respond to α-MSH. Using receptor-binding analysis and photoaffinity crosslinking we demonstrate that the lack of response of B16-G4F cells to α-MSH is due to the absence of functional MSH receptors from the cell surface. Northern blot analysis of receptor mRNA revealed that MSH receptor mRNA is not expressed in B16-G4F cells. These cells represent a new tool for the study of signal pathways related to the control of melanogenesis in melanoma cells.

B16-F1; B16-G4F mouse melanoma cell; Melanocyte stimulating hormone; Receptor expression

1. INTRODUCTION

Melanin pigments are produced in subcellular organelles, the melanosomes, which are distributed throughout the cytoplasm of melanocytes, and serve important physiological functions [1,2]. Intracellular melanin levels undergo alterations in response to various physiological stimuli [3]. However, the precise molecular mechanisms involved in skin pigmentation are still poorly understood. α-MSH is a well known stimulator of melanogenesis in mammalian melanocytes and melanoma cells and acts via the cAMP pathway on tyrosinase (EC 1.14.18.1) [4]. A specific membrane receptor for α-MSH has been characterized by structure–activity and binding studies [2] and by use of photoaffinity labelling techniques [5,6,7]. Recently the cDNAs encoding the human and mouse MSH receptor genes have been cloned and sequenced [8, 9]. This report presents evidence for the identification of a B16 murine melanoma subclone lacking MSH receptors.

2. MATERIALS AND METHODS

α-MSH was a gift of Ciba-Geigy AG (Basel, Switzerland). The preparation of the radioligands ([125I]Tyr²,Nle⁴,D-Phe⁷)α-MSH and of photoreactive ([125I]Tyr²,Nle⁴,D-Phe⁷,Trp(Naps)⁹)α-MSH ([125I]Naps-MSH) was performed by the chloramine-T method as previously described [6]. All chemicals and solvents were of the highest purity available.

Correspondence address: A.N. Eberle, Department of Research (ZLF), University Hospital, Hebelstrasse 20, CH-4031 Basel, Switzerland. Fax: (41) (61) 265-2350.

2.2. Tissue culture

The B16-F1 and B16-G4F cell lines were maintained at 37°C in a humidified 95% air/5% CO₂ atmosphere using modified Eagle's medium (MEM) with Earle's salts (Gibco, Paisley, UK) supplemented with 10% heat-inactivated fetal calf serum (Amimed, Basel, Switzerland), 2 mM L-glutamine (Gibco), 1% MEM non-essential amino acid solution (Gibco), 1% MEM vitamine solution (Gibco), 50 U/ml of penicillin and 50 µg/ml of streptomycin.

2.3. Bioassavs

The melanogenic response was determined with the in situ melanin assay as described previously [10].

2.4. Photoaffinity labeling

500 ul of cell suspension (10⁷ cells/ml) were incubated at 25°C together with 100 μ l of a 2 nM [¹²⁵I]Naps-MSH solution in the presence or absence of a 3000-fold excess of α-MSH. After 90 min, the samples were UV-irradiated on ice for 5 min, using the whole 310-550 nm spectrum of a 1 kW Oriel mercury-xenon UV-irradiation apparatus (irradiation intensity: 180 mW/cm²). Irradiated cells were extensively washed with cold 0.2% EDTA in PBS, pH 7.4. They were then lysed by resuspension in 2 mM Tris-HCl, pH 7.4, containing 0.3 mM 1,10-phenanthroline (15 min on ice) followed by homogenization. The pellets were resuspended in SDS-PAGE sample buffer and analyzed on gels as described previously [6].

2.5. Competition binding assays

The cell suspension was prepared at a density of 10^7 cells/ml in modified Eagle's medium with Earle's salts (Gibco) containing 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 0.2% bovine serum albumine and 1 mM 1,10-phenanthroline (Merck, Darmstadt, Germany). Binding was initiated by adding 50 µl of ([125I]Tyr2,Nle4,D-Phe⁷] α -MSH to Eppendorf tubes containing 50 μ l of [Nle⁴,D-Phe⁷] α -MSH peptide dilutions and 500 μ l of cell suspension. For equilibrium binding the samples were incubated at 15°C for 3 h. Unbound radioactivity was removed by centrifugation through silicon oil. The binding parameters were determined by Ligand, an iterative non-linear regression analysis program [11].

2.6. Plasma membranes from B16 cells

Subconfluent monolayers were harvested with EDTA-PBS and

washed twice with PBS. Lysis of the cells was performed in 5 mM Tris-HCl, pH 7.4, containing 1 mM 1,10-phenanthroline. The homogenate was centrifuged at $10,000 \times g$ for 30 min. The resulting supernatant was adjusted to 10 mM MgCl₂ and further centrifuged at $100,000 \times g$ for 1 h at 4°C. The membranes were resuspended in 25 mM Tris-HCl, pH 7.4, and the protein concentration was determined according to Lowry [12].

2.7. Adenylate cyclase activity assay

Adenylate cyclase activity in B16-F1 and B16-G4F plasma membranes was determined using $[\alpha^{-32}P]ATP$ as substrate. The reaction mixture (100 μ l final volume) contained 25 mM Tris-HCl, pH 7.5, 1 mM cAMP, 10 mM creatine phosphate, 0.25 $\mu g/\mu$ l creatine kinase, 5 mM MgCl₂, 100 mM NaCl, 0.1 mM $[\alpha^{-32}P]ATP$ (1–2 × 106 cpm/assay), 50 μ M ATP, 50 μ M GTP, 5 mM IBMX together with one of the adenylate cyclase agonists. Assays were initiated with the addition of 60 μ g plasma membranes and were incubated at 37°C for 15 min. Termination of the assay was achieved by the addition of 200 μ l of 0.5 N HCl. The samples were immersed in boiling water for 7 min, neutralized with 200 μ l of 1.5 M imidazole and cAMP was quantified by the method of White [13].

2.8. Polymerase chain reaction

The oligonucleotide primers were designed according to the published mouse MSH receptor cDNA sequence [9]. The primer sequence at the 5' end was 5'-ACAAGACTATGTCCACTC-3' and at the 3' end 5'-CAGGAAGGGATGAGTACC-3'. PCR was performed according to Saiki et al. [14]. Briefly, 1 μ g of mouse genomic DNA was subjected to amplification in a 50 μ l reaction mixture containing 10 mM Tris-HCl, pH 9, 50 mM KCl, 0.01% gelatin and 1.5 mM MgCl₂. Sense and antisense primers were added at a concentration of 1 μ M, followed by 200 μ M of each dATP, dCTP, dTTP and dGTP (Pharmacia) with 0.25 U of Taq Polymerase. The PCR profile used was 94°C for 60 s, 45°C for 40 s and 72°C for 60 s, using a thermal cycler (Perkin Elmer Cetus, USA). The PCR product was gel purified and subcloned in pBluescript SK- (Stratagene). The resulting plasmid was sequenced using the chain termination method [15] in order to confirm the DNA sequence.

2.9. Northern analysis of mRNA

Total mRNA was isolated using the guanidium thiocyanate method [16]. $10~\mu g$ of total RNA was subjected to electrophoresis through a 1% formaldehyde agarose gel. The RNA was blotted on Hybond (Amersham). The hybridization was done for 16 h at 65°C in 0.5 M NaH₂PO₄, pH 7.2, containing 7% SDS, 1% BSA, 10 mM EDTA and the ³²P-labelled MSH receptor probe. The membrane was then washed for 30 min in $2 \times SSC$ and 0.1% SDS followed by 30 min in $0.1 \times SSC$ and 0.1% SDS. The membrane was exposed to a autoradiographic film for 20 h at -70°C.

3. RESULTS AND DISCUSSION

Terminal differentiation of B16-F1 cells in culture can be monitored by the production of melanin pigments [2,10]. While melanogenesis in the B16-F1 clone was stimulated by the addition of various concentrations of α -MSH, the results displayed in Fig. 1 show clearly that the hormone did not induce melanin production and release in the B16-G4F clone. This finding is in accordance with our previous results [17,18] which showed that α -MSH and ACTH did not stimulate tyrosinase activity during the logarithmic growth phase of B16-G4F cells, indicating a possible impairment in the signal transduction pathway of these peptides. We suggested that the defect is located before the activation of protein kinase A since 2 mM theophylline could elicit

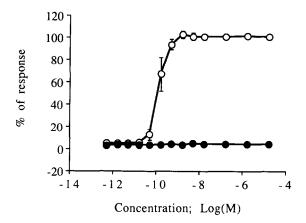


Fig. 1. Dose–response curves of B16 melanoma cell clones to α -MSH. The total melanin content of B16-F1 (\bigcirc) and B16-G4F (\bullet) cells was determined after 72 h of stimulation with serial dilutions of α -MSH in three independent experiments.

a rise in tyrosinase activity. In order to identify the putative defect(s) in the MSH signal transduction machinery we investigated cAMP production in B16-G4F cells as compared to B16-F1 cells. Adenylate cyclase activity in plasma membrane fractions from B16-F1 was highly stimulated by 10^{-6} M α -MSH, 10^{-4} M forskolin and 10⁻² M sodium fluoride. The B16-G4F plasma membranes could also be stimulated by forskolin and NaF to produce cAMP, but not by α-MSH (Fig. 2). The lack of adenylate cyclase response to MSH is therefore clearly due to the absence of functional MSH receptors, since a functional α_s subunit of the heterotrimeric GTP-binding protein and adenylate cyclase must be present. This finding is further supported by competition binding analysis ([125I])Tyr²,Nle⁴,D-Phe⁷)α-MSH as tracer and its non-

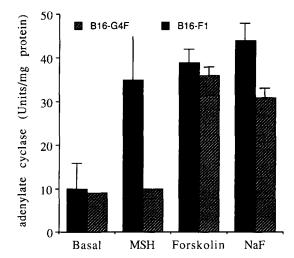


Fig. 2. Adenylate cyclase activity of B16 melanoma membranes after stimulation with various agonists. One unit of enzyme was defined as the amount catalyzing the formation of 1 pmole of cAMP/min. Results are expressed as the mean ± standard deviation of quadruplicate determinations.

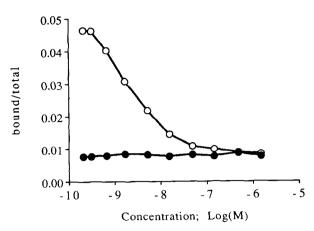


Fig. 3. Competition binding assays using constant amounts of ([¹¹⁵I]Tyr²,Nle⁴,D-Phe³]α-MSH and varying concentrations of [Nle⁴,D-Phe³]α-MSH as displacer. B16-F1 (○) and B16-G4F (●) cells were incubated for 3 h at 15°C in the presence of both peptides and unbound radioactivity was determined as described in section 2.

iodinated form as displacer (Fig. 3). We have also performed photoaffinity labeling experiments using [125]Naps-MSH as photoreactive probe [6] for the identification of MSH receptors on the cell surface of B16-G4F cells. As shown in Fig. 4 our results corroborate the previous finding since no molecule could be identified which had incorporated [125]Naps-MSH after photoactivation. Furthermore we have analysed the MSH receptor mRNA of both cell lines by Northern blot analysis. A mouse MSH receptor probe was generated by PCR from the published cDNA sequence [9]. Northern blot analysis revealed that B16-F1 cells contain a

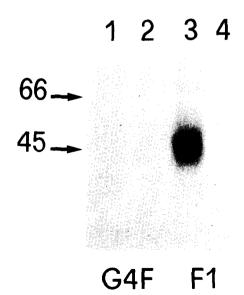


Fig. 4. Autoradiogram of an SDS-PAGE analysis of affinity-labelled B16 melanoma cells. Covalent labelling was achieved by incubating B16-G4F (1,2) and B16-F1 (3,4) cells with 0.2 pmoles of [125 I]Naps-MSH, in the presence (2,4) or in the absence (1,3) of a 3000-fold excess of α -MSH.

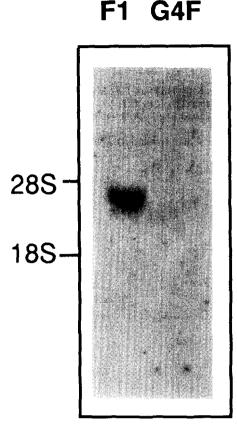


Fig. 5. Northern blot analysis of MSH receptor transcripts in B16-F1 and B16-G4F cells. 10 µg of total mRNA was separated through a 1% formaldehyde agarose gel, blotted on Hybond (Amersham) and hybridized with the ³²P-labelled mouse MSH receptor probe. Locations of 28 S and 18 S ribosomal RNA are indicated.

transcript of ~4kb. In contrast no MSH receptor mRNA was observed in B16-G4F cells (Fig. 5).

Taken together these results show clearly that the lack of functional MSH receptors in B16-G4F is not caused by a mutated receptor protein but by the absence of expression of MSH receptor mRNA. Thus the B16-G4F melanoma cell clone will become a very useful tool for the study of signal pathways controlling melanogenesis.

Acknowledgements: This work was supported by the Swiss National Science Foundation.

REFERENCES

- [1] Mileo, A., Mattei, E., Fanuele, M., Delpino, A. and Ferrini, U. (1989) Pigment Cell Res. 2, 167-170.
- [2] Eberle, A.N. (1988) The Melanotropins; Chemistry, Physiology and Mechanism of Action, Karger, Basel.
- [3] Pathak, M.A., Jimbow, K. and Fitzpatrick, T.B. (1981) in: Pigment Cell 1981 (Seiji, M. ed.) pp. 655-670, University of Tokyo Press, Tokyo.
- [4] Johnson, G.S. and Pastan, I. (1972) Nature New Biol. 237, 267– 268.

- [5] Gerst, J.E., Sole, J., Hazum, E. and Salomon, Y. (1988) Endocrinology 123, 1792–1797.
- [6] Solca, F., Siegrist, W., Drozdz, R., Girard, J. and Eberle, A.N. (1989) J. Biol. Chem. 264, 14277-14281.
- [7] Scimonelli, T. and Eberle, A.N. (1987) FEBS Lett. 226, 134-138.
- [8] Chhajlani, V. and Wikberg, J.E.S. (1992) FEBS Lett. 309, 417–420.
- [9] Mountjoy, K.G., Robbins, L.S., Mortrud, M.T. and Cone, R.G. (1992) Science 257, 1248–1251.
- [10] Siegrist, W. and Eberle, A.N. (1986) Anal. Biochem. 159, 191– 197.
- [11] Munson, P.J. and Rodbard, D. (1980) Anal. Biochem. 107, 220– 239.

- [12] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [13] White, A.A. (1974) Methods Enzymol. 38C, 41-46.
- [14] Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Ehrlich, H.A. (1988) Science 239, 487-491.
- [15] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [16] Chirgwin, J.M., Prybyla, A.E., Mac Donald, R.J. and Rutter, W.J. (1979) Biochemistry 18, 5294-5299.
- [17] Iwata, I. and Inui, N. (1980) Proc. Jap. Acad. 56B, 146-151.
- [18] Iwata, I. and Inui, N. (1981) in: Pigment Cell 1981 (Sciji, M. ed.) pp. 247-253, University of Tokyo Press, Tokyo.